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ABSTRACT

This paper describes the derivation of several item selection algorithms

for use in fitting test items to target information functions. These

algorithms circumvent iterative solutions by using the criteria of moving

averages of the distance to a target information function and simultaneously

considering a.4 entire range of ability points used to condition the

information functions. The algorithms were implemented in a microcomputer

software package and tested by generating six forms of an ACT math test, each

fit to an existing target test, including content-designated item subsets.

The results indicate that the algorithms provide reliable fit to the target in

terms of item parameters, test information functions and expected score

distributions. A discussion of the application is included.
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Introduction

Advances in computer technology have generated a growing interest in test

construction applications which take advantage of that tecitnology. One such

area of interest has been the use of computers to create parallel tests.

In Item Response Theory (IRT), parallelism among tests, test forms or

subtests can in part be determined by what are termed item i.nd test

information functions among other criteria. IRT uses this concept of

information, conditional upon a latent ability, e, to determine measurement

precision. Contrasted with classical test theory, which derives a single

estimate of measurement accuracy via reliability and the standard error of

measurement, IRT uses the inverse of the square root of the information

function about the Os to denote measurement accuracy across an entire latent

ability metric.

This information is defined at the item level by

where 1.3.(8 ) is the probability of a correct response to item j at some
j k

(I)

ability level, 8k, Qi(8k) = 1 Pj(ek), and Pi (8k) is the first derivative

of Pi(8k) with respect to ek. Furthermore, the item information, Ii(8k), is

additive which allows us to derive the information for an entire test or

subtest as

T(8
k

) = E I
k

(8 ).

3-1
j

It must be noted, however that T(Ok ) is merely the test information

function conditional upon some single level of ability, 8k Because

(2)
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the 8
k
abilities are in reality distributed continuously on R or the real

number line, (-0,, +0.), we must extend our concern beyond some kth ability

point to an entire test information curve. The shape of and area under such

test information curves can then be used to determine a weak form of

parallelism among tests (Lord, 1977, Samejima, 1977). That is, tests (forms

or subtests having similar content and measuring the same latent trait) with

identical test information curves may be considered essentially to be

parallel. Therefore, if we can create different test forms with approximately

the same test information curves (and similar content), then our forms should

be reasonably parallel.

However, practical solutions to the problem of actually generating

parallel tests via test information curves have demonstrated only limited

success. Algorithms suggested by Theunissen (1985) and van der Linden and

Boekkooi-Timminga (1989), which employ zero-one, linear programming to

maximize test information, tend to require large amounts of computing time and

remain limited for large scale applications. Although parameter restrictions

and heuristics can be applied to the zero-one problem (e.g. Adema, 1988) a

trade-off of computer time versus accuracy tends to result.

Other techniques based upon more heuristic approaches (sort and search

rule-based algorithms) more dramatically reduce computational loads but run

the risk of operating with limited accuracy. For example, Ackerman (1989) was

able to demonstrate the implementation of a strictly heuristic technique which

prioritized item information based upon distance from a target test

information curve. Under Ackerman's approach, pooled items were presorted ar

various ability levels by descending information and those items which

contributed the most information at priority points on the test information

curve were assigned to test forms. Unfortunately, Ackerman's technique tended
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to always choose the most discriminating items and usually overestimated the

target test information curves (i.e. produced more informative tests than

targeted).

What appears necessary, therefore, is a set of techniques which effect a

comprcmise between computational loads and purely heuristic approaches. This

paper focuses upon that specific problem--to determine a set of general

heuristics and algorithms which can be used to select J items from a pool of M

items (J<M) which minimize the difference between a target information curve

and the actual information curve formed by the J items, at some K points along

an ability distribution.

Derivation of the Item Selection Algorithm

We begin by defining Tk as some amount of targeted test information,

conditional upon ek, (k = K quadrature points). This target

information is assumed to represent the standard form of a test who,e

properties we wish to match. We also define T. as the conditional
Jk

.information with respect to the j th selected item (*j = J, k =

K) such that

A j*

T = T. = E I.(8 .

k jk
j=

j k-
1.

(3)

*
Note that by prior definition of the test information, equation f2), Tjk

merely an incremental sum of the item information, yek). To further clarify

equation (3), it is only for conceptual convenience that we distinguish

between T
jk

as the approximation of tlie i._em Information functions being

incrementally summed and T as the finished approximation :f the information

function, conditional upon ek (i.e. T
k

T
jk

where

8
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As implied earlier, the ability distribution of es used to condition the

test information curve is generally considered to span +00}; however, in

practice, K is usually kept to some small number of quadrature points (e.g.

K < = 31) on the interval (-3.0, +3.0)) minimally adequate for sampling the

cumulative information function (CIF, or cumulative density of the information

function conditional on 0) at equal partitions.

Next, we need to consider the distances betwaen the target function, Tk,

and the information function under construction, T*
k.

That distance is given
j

by

d
k

= 0 for T S T.
*k jk *

a
k

= IT - T. 1

k jk d
k

= T
k

- T.
jk

for T T.
k jk

(4)

which denotes the absolute difference (distance) between the target fvnction,

and the approximation of the test informatio... function, .Tjk .

We can now adjust dk to a partitioned distance corresponding, ideally, to

*
smooth growth in given

k'
as

d J-j+1 , j = 1...,
k

This partitioning of the information function at so= rro.ta:, k. assumes

;:hat d
k

is the optimal information with which to eval,.Ate tLe next J - j 1

items. In short, dk becomes a moving average of the information selection

criteria and is adjusted at each iteration in the selection process.

Tly..!re appear to be two sound reasons for using dk First, the 3veraging

process explicit in computing d
k
would appear to prevenc extreme (and

arbitrary) groith in any one area of the curve. That is, items with maximal

cr minimal information properties at any kch aoility point will be less likely
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to be chosen than items with less extreme information. Thus, averaging should

producesmothgrowthin.Tjk as opposed to sporadic growth which requires

continual and sometimes dramatic correction. Second, the dynamic nature of

computing 6k at each jth selection iteration allows for constant "fine tuning"

along the Ak (k = 1...K) points. In other words, error in estimating the

target funcLion is accounted for directly by the algorithm as part of the next

set of distances from the target to be evaluated.

Once 6
k

is derived, we use it to create a set of relative

weights, wk, which will then be used to actually prioritize the information at

K ability points being evaluated. The relative weights are determined by

normalizing the 6
k
's acrJss the k quadrature points, as given by

(6 )

where E w
k

= 1.0. (In practice, 1 - w
k
will serve as the actual weight for

k=1

reasons explained below.)

We now proceed to use 6k and wk to evalvAte the M - j + 1 items in the

item pool. Let denote the absolute error difference between the
mk

information of each mth item in the pool, evaluated at the kth ability point,

and 6k. That is,

&mk lImk 6k1 '

where
mk

might be called the error in fit of the M - j + 1 items in the

unused item pool to 6
k.

It should be noted that in some sense 6
mk

is an

arbitrary measure of the relative estimation error during the process of

( 7 )
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selecting items. Accordingly, rank ordering the absolute differences

between I
mk

and 6
k

or squaring that difference might each be suggested as

plausible alternatives for arriving at 4111k. However, only in its form as

the absolute difference retains the scale properties of the information

functions under evaluation. In short, any derivation of except by using

the absolute difference would introduce additional, arbitrary and probably

unwanted weighting of the item information along the K ability points.

th
Finally, to determine the selection of the

j item, given M - j + 1

items, we neea to create a composite selection value for each of the pooled

items as a sum of each weighted relative error (i.e. a sum of the product

of 1 - w
k

and
mk

), across the K ability points. Note that the use

of 1 - w
k

in place of w
k
merely guarantees that the weighting and thc re!ative

error in fit, remain in the same direction. By summing the weighted

relative errors, we arrive at an adjusted item selection composite (of the fit

*
tosmoothgrowth in Tjk) .for the M j + 1 items remaining in the pool. That

adjusted item fit selection composite, Sm, is given by

S
m

= Z (1 w
k
)&
mk

k=1

(8)

During each iteration of the selection cycle, the item with the smallest

value of Sm
(i.e. least overall error, weighted by information importance) is

chosen from the M j + I pool, j is incremented and the process continues

until j = J or untiL a specified degree of accuracy in approximating Tk (k =

11..K) is attained. Finding the item with the minimum value of Sm (per

iteration) therefore serves as the primary heuristic to be used daring the

selection process.
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L.)f_ndwith Item Subsets and Subtests

One assumption implicit in the algorithm described in the prior section

is that the target curve is comprised of fairly homogeneous items. That is,

in building Tjk (see equation [3]), the item information functions are

essentially compared to a criterion of an average information function for

each of J items (conditional upon the quadrature points, 8k, k = 1...K). In

certain circumstances, this assumpcion may not be tenable. Where a target

curve is established as a composite of subsets of items from an existing test

or from item specifications (e.g. subtests categorized by content area and/or

some other criteria), the categorical subsets may have different information

distributional properties, i.e. moments of the information curves, than the

overall target information function.

In these situations, multiple targc.s can be used in a two-stage fitting

procedure. Essentially, the method involves fitting each categorical or

criterial subtarget in the first stage and then grouping the selected item

subsets in a second stage to fit an overall targeted test information

function.

In the first stage of this procedure, we presume to fit a subtarget, Tk,

conditional upon ek, comprised of J(r) items for r=1 R subsets of items such

that

T
k

= E
.

T
rk

k= 1...K
'

(9)

Thus, the subtarget represents an allowable partitioning of the information

function in the overall target, given 6k In judging the fit of J(r) items to

the subtarget, Tkr, the item selection score, given by equation (8), is now

denoted as S
rm

corresponding to the [restricted] subset of items in the
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pool. We then independently fit a subset of items
'

T
J(r)k

, to each T
rk

subtarget (k = 1...K, r = 1...R), where

T*
J(r)k

1 I. (0
k

) k = 1...K
j(r)

(r)

10

(10)

After all R subsets of J(r) items have been fitted to each subtarget,

Trk we proceed to the second stage of fitting. In this stage, we use the

subsets of the J(r) selected items as the basic units of comparison. The

selection algorithm proceeds as described in equation (8) but now compares the

composite fit of the R subsets of selected J(r) items, or Tj(r)k , to the

overall target Tk. This item subset score is given by

where

J
(r)

= E (1 - Wk) Ij(r)(ek) - dki

Tk - E T
J(r)k

r=1
dk

R - r + 1
(12)

with restrictions identical to those given in euations (4) and (5), and where

Wk is defined and used as shown in equations (6) and (8), Therefore, the

subset of J(r) items which minimizes the weighted sum of information to the

average growth in the conditional curve being fitted is selected for r

cycles.

Multi le Parallel Test Forms

Multiple parallel test forms can be constructed in the same manner as a

*
single test form. The major difference lies in the need to consider T. (j =,

1...J, k = 1...K, q = 1...Q), where Q is the number of test forms being fit to
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the target, Tv. Furthermore, by rotating the order of the form being fit (q)

at each jth item selection iteration and controlling for duplication of item

selection across forms, the assignmLnt of items (based upon their information

fit to 6
kq

) can be essentially equalized across test forms.

Methods

Implementation

All algorithms and heuristics discussed in the prior section were

formally implemented in an IBM-compatible microcomputer-based package called

ITEMSEL. This integrated software consists of 10 menu-driven program modules

written in Microsoft QuickBasic 4.0 (1987) by the first author. ITEMSEL

features EGA/VGA graphics for on-screen presentation of the selection process

and provides a wide variety of item data base modules and file handling

utilities which facilitate the item selection process. The software package

also fully supports the construction of multiple test forms, the use of

multiple subtargets for dealing with content subtests or subsets of items and

even allows user submitted item substitutions.

The basic process of using ITEMSEL involves user inputs of an item pool

file, a target information file, related control inputs such as the size of J

or J(r) kthe number of items to be selecte:.) and content filter values/text.

Selected items are retained in additional files where optimization of the

fitting process cau occur or from which optional combining of item subtests

can be accomplished.

The programs assume a 3-parameter IRT or logistic model for purposes of

computing 311 information quantities. Under that model, the probability of a

correct response to item j, conditional on ability, Bic, is given by

-Da.(0, b.) -1
P.(0 ) =c+ (1 c)t1 +e (13)

i k

1'4z
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where cj is the lower asymptote parameter, aj is the discrimination parameter

and bi is the item difficulty. D is a constant equal to approximately 1.702

and used for scaling e under the logistic model.

Data S ecifications

An item pool consisting of 600 mathematics items from ACT testing

programs was selected to investigate the use of the Sm and Srm algorithms as

implemented by the ITEMSEL program. 520 of the items were from 13 previously

administered ACT Assessment Program (AAP) Mathematics tests. An additional 80

items were drawn from the Collegiate Mathematics Placement Program (CMPP).

Item parameters for all 600 items were derived from a three-parameter logistic

calibration performed using LOGIST IV (Wingersky, Barton and Lord, 1982) and

scaled to a common ability metric using equivalent groups.

40 items which comprised the AAP Mathematics Form 26A were selected as

the overall test target curve to remain consistent with a previously noted

study conducted by Ackerman (1989. These 40 items were also included in the

item pool. The Form 26A target curve was fit by evaluating the test

information at K = 31 quadrature points on th' 8 interval (-3.0, + 3.0). The

cumulative information function (CIF) was equally partitioned (based upon an

integration of 1000 e points) to locate the 31 points. That is, points were

selected which divided the information curve into equal area partitions.

Additionally, the six content areas which comprise Form 26A of the AAP

Mathematics test were used to generate six corresponding subtargets. The CIF

of each subtarget was likewise partitioned independently when generating the K

= 31 quadrature points. These Form 26A subtest clntent areas contained the

following numbers of items (for purposes of computing the information

functions and generating subsequent subsets of items): AAR = 14 items, AAO =

4 items, G = 8 items, IA = 8 items, NNS = 4 items and AT = 2 items.
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Item Selection Procedures

The ITEMSEL microcomputer program was employed in a two-stag iet of

fitting procedures meant to generate six independent forms of the AAP

Mathematics test. In the first stage, six forms of each of the content areas

(AAR, AAO, G, IA, NNS and AT) were initially fit to the Form 26A subtest

information targets. ITEMSEL thus generated a total of 36 content-restricted

item subsets. In the second stage of fitting, an "optimizer" module in the

ITEMSEL system was used to identify and combine composite groupings of the

content-restricted item subsets which fit the overall Form 26A target

information curve to produce six independent forms of the AAP Mathematics test

(see Dealing with Item Subsets and Subtests). That is, each of the six

generated total test forms was created as a summation of the unique AAR, AAO,

G, IA, NSS and AT subsets of items which "best" fit the overall Form 26A

target curve.

The generation of multiple forms during both stages of item selection was

perfurmed as a simultaneous operation. As described earlier, ITEMSEL

automatically rotated all f^-.1 indices as each item or item subtest was

selected to ensure equalization of the item/subtest selection process across

forms.

Results

In the present study, six forms of 40 ite;s each were generated by

ITEMSEL using the 600 items in the math pool and the Mathematics test Form 26A

target information va1ues conditional on K:,31 quadrature points of O. In

assessing the quality of the algorithms to fit the Form 26A target a number of

considerations and comparisons are presented.
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Summary of IRT Item Parameters

The IRT item parameters (discrimination, difficulty and the lower

asymptote) provide an important starting point in consideration of the item

selection process. Assuming that the test target represents an ideal

composite of items, we would expect that the items selected or fitted via the

ITEMSEL program should demonstrate similar distributions of the item

parameters to those present in the target specifications or test.

A summary of the means and standard deviations of the item parameters is

presented in Table 1. This table compares the distributional properties of

the parameters for each of the six generated AAP Mathematics test Forms (A-F)

with the Mathematics test Form 26A target parameters. In general, the

apparent trend of the parameters suggests a verx sliglt tendency (with one

exception, Form F) by ITEMSEL toward overfitting the average item

discrimination parameters (a) and toward choosing items with nominally higher

mean difficulty parameters (b).

Insert Table 1 about here

The net result appears to be, therefore, a tendency for ITEMSEL to spread

out the information (i.e. produce a more platykurtic distribution of

information). Given the explicit averaging of the conditional information

functions, via the Sm algorithm, this minor distributional difference seems

quite reasonable. It should also be noted that despite the minor

distributional differences between the item parameters of the target test and

those of the selected test forms, ITEMSEL was nonetheless very consistent in

matching item parameters among Forms A through F of the test.
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As an additional comparison, consider Table 2 which shows the means and

standard deviations of the IRT parameters from 12 manually constructed

Mathematics test Forms (i.e. actual forms prepared by ACT test development

staff). Table 2 would appear to provide strong evidence of a greater degree

of variation in the types of items which were manually selected across forms

than was present in the computer-selected forms sumur.rized in Table 1. It

should be noted, however, that these 12 manually-constructed test forms did

not use target test information as the objective criteria.

Insert Table 2 about here

Coodness-of-Fit

In addition to the descriptive summary of the item parameters, we can

also consider the test information curves, themselves. As shown in Figure 1,

all six selected Mathematics Test Forms (A-F, 40 items each) demonstrated

quite similar patterns of information. That similarity is perhaps even more

evident in terms of the means and variances of the information curves (for

which estimates of the expectations can be derived across the 31 quadrature

points of 0). For the target test, Form 26A, the mean information across the

31 quadrature points of 8 was 21.67. Comparatively, the average of the

expected means of the test information curves for the six selected test forms

(A-F) was 21..54. Likewise, the approximate variance of the Form 26A target.

information curve for 31 quadrature points was 152.53. This compares to an

average variance of 161.55 for the Form A-F test information curves.

Therefore, the general indication is that the information curves from the six

selected test forms were essentially centered at the same point as the target

curve, but with nominally larger variances.

1 6
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Insert Figure 1 about here

Figure 2 presents the subsets of items selected by ITEMSEL to fit the

individual content area subtargets (AAR, AAO, G, IA, NNS and AT). Some

caution is warranted, however, when reviewing these content-specific graphs of

the item subsets. The apparent differences in the curves across content areas

must take into account the scaling of the ordinate axes. For example, the AT

Forms appear to demonstrate a greater lack of fit than the AAR Forms.

However, if we consider the ordinate axes of the AT curves versus the AAR

curves, it should be obvious that the real differences between the AT curves

(2 items per subtest form) are actually as small or smaller than the

differences between the AAR curves (14 items per subtest form).

Insert Figure 2 ")out here

In judging the actual degree of fit between curves, a more useful set of

goodness-of-fit indices (beyond visual inspection) seems needed. Table 3

presents four such indices for the six AAP Math Forms fit to the Form 26A

target information.

Insert Table 3 about here

The unweighted average absolute difference (IUADI) represents the mean of

the unsigned differences between the curves, as given by

1

IUAD1
k=1

J

(14 )
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The unweighted root mean square (URMS) index represents the square root of the

mean squared deviations between the fitted and target curves along the

quadrature points. That is,

K - 2

(T
k
-T

k
)

k=1
URMS = (15)

The weighted mean square (WMS) is similar to the URMS, but uses a normalized

weighting of the standardized true scores, given each quadrature point, to

essentially scale the information differences to the expected score density of

the 0 metric for the selected items. Therefore, the weighted mean square is

given by

where

and

2

WMS = 0(1,) (T
k

- T
k

) (16)

k=1

o(ck)

2

2

e
2

k-1

K J

P.(06) y P.(e6) / K

j-1 k-i

K K

P.(9,) f p.(0 ))
J

2

k-1 k-1 -1 -
. k

K(K-1)

20

(17)

(18)
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given P.(8
k
) as the probability of a correct response to item jt. conditional

upon Bk. Finally, delta (A) is given as a squared difference weighted by the

normalized information functions (densities) of the target function.

Accordingly, delta becomes

where

k 2

A = y T
k

(T
k
- T

k
)

k=1

T
k

T
k

k-1

Tk

(19)

(20)

By themselves, the four goodness-of-fit indices provided in the upper

half of Table 3 imply both weighted and unweighted functions of various forms

of th average uns:lned differences between the Form 26A target curve and the

selected test information curves (i.e. the curves for Forms A-F). However, to

put these indices in a different perspective, we might consider these indices

as proportions of an information function, conditional upon some value of e.

To do so merely requires dividing the value of the indice in Table 3 by the

information function at some point along the 8 metric (e.g. the mean

information for the Form 26A target test of 21.67). For example,

the IUAD1, URMS, WMS and A values (0.709, 0.849, 0.874 and 0.943) in the first

row of Table 3 could be seen to represent proportional differences between the

Form A curve and the Larget curve ranging from 3.28% to 4.36%, at the point of

average test discrimination. These proportional differences, conditional upon

the mean information in the Form 26A target curve, are provided in parentheses

below each goodness-of-fit index in Tab'e 3. The basic implication is that

the fit between the information curves is actually far better than the indices
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in the upper half of Table 3 might suggest on the surface. That is, the

apparent functional differences taken as relative ratios (proportions) to the

amount of average information in the target curve (e.g. 3.1% to 5.0% in terms

of IUAD1) are essentially inconsequential.

As another method of assessing the goodness-of-fit, we might consider the

relationship between the test information and the standard error of the latent

abilities, 8, given by

1

'3e(0)

I.(8)

j-1

Using this relationship, it becomes possible to restate the goodness-of-fit

statistics as weighted functions of the average unsigned diff.rences between

the standard errors conditional on 8. These standard error differences are

provided in the lower half of Table 3.

The unweighted absolute average difference (IUAD1
SE(8)

) and the

unweighted root mean square (URMS
SE(0)

) of the standard errors obviously

appear larger than the weighted mean square (WMS sE(e)) and delta (A
sE(e)).

The reason has to do with the larger standard errors on 8 at the asymptotes of

the information curves. Because both the IUADI
SE(0)

indicesand
R
MS

SE(0)

treat all quadrature points of 8 equally, both statistics essentially inflate

the apparent unsigned average differences between the standard errors for the

target versus fitted curves. RMSsE(8) further takes the square root which

inflates the difference even more for values between 0 and 1. The (WMS sE(e))

and (A
SE(8)

) indices, therefore, appear to be more meaningful in that both

tend to limit the impact of standard error differences for 0 values near the

asymptotes. This is especially true if we consider that the seemingly largest
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differences between fitted forms and the target information functions occurred

for Form F (referring to the upper half of Table 3). However, considering the

weighted differences between the standard errors (lower half of Table 3), the

differences are negligible.

Ex ected Score Differences

The final determinants of the adequacy and accuracy in fitting a target

test using the Sm and Srm algorithms (as implemented in the 1TEMSEL software)

are the expected score distributions obtained from the various tests. That

is, if we consider the issue of parallelism among test forms to extend beyond

our objective function (test information), then we must also consider what the

score distributions of the fitted test forms will look like in comparison to

the target test (AAP Math Form 26A, in this case).

Figure 3 presents the test characteristic,: curves (TCCs) for each of the

six fitted test forms along with the TCC for Form 26A. Tilese TCCs are defined

by the sum of the conditional probabilities for all items in a test across

the 0 metric. That is,

T(8) = P(0)

j=1

(21)

where P.(0) is the probability of a correct response to item j, conditioned

upon 9 (see equation [13]). T(8) therefore defines the expectation of a

random individual's true score on J items, given his/her ability level (Lord,

1980).

Insert Figure 3 about he.ee
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Quite cltarly, Figure 3 demonstrates a very close correspondence between

true scores across the fitted forms of the AAP Math test and Form 26A.

Additionally, the differences between predicted score distributions can be

compared by converting the true scores to a discrete number-right scale. In

the present study, predicted scores were obtained by assuming a (0,1) normal

distribution on e. Table 4 provides the means, standard deviations, E,kewness

and kurtosis values of the predicted score distributions for the six AAP Math

test forms fitted by ITEMSEL and the Form 26A target test. Classical item p-

values and biserial correlations and their standard deviations are also shown

in Table 4.

Insert Table 4 about here

Table 4 provides fairly clear evidence of parallelism among the six fitted

forms and the target test, not only in terms of predicted means and standard

deviations, but also skewness and kurtosis. In other words, the process of

fitting the target information was sufficient to fit the expected and

predicted score distributions for the present item pool. Finally, as

suggested by the mean p-values and biserial correlations (and their standard

deviations) the Sm and S rm algorithms also seem to satisfy classical testing

theory criteria for parallelism.

Microcomputer Timed Performance

ITEMSEL was run on a Compaq 386133 microcomputer for the present s.ludy.

As such, resulting performance indicators are perhaps optimistic ones For most.

microcomputer environments. Also, due to the interactive nature of t'?.

fitting process, user skill greatly enters into the assessment of timed

performance. Nonetheless, several timing indices can be stated.
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The entire process of constructing the six AAP forms, including all user

inputs, fitting of subtargets and optimization of item content-designated

subsets to the overall target information curve ranged from 15 to 20 minutes

in multiple trials. This compares to informal estimates made by ACT test

development staff of about 170 hours to accomplish the same task manually

(Noble, 1990). Of course, the 170 hours would also include tormulating

additional constraints and making qualitative judgements about the constructed

forms beyond the test information fit criteria.

In terms of more precise time estimates, the fitting of the six item

subsets (six forms each) ranged from 1.2 to 10.9 seconds, depending upon the

number of items. The process of choosing optimal subsets took 1.5 seconds of

CPU.time. Comparatively, fitting six forms of the overall Form 26A target

curve (without content breakdowns) used 70.7 seconds of CPU time on the same

Compaq 386/33 microcomputer. It should be noted, however, that these timing

values also include the generation Jf graphics displays during all selection

stages.

Discussion

The Sm and S
rm

algorithms were introduced as viable methods for fitting

test items to a target information curve. 'Both algorithms use the criterion

of a moving average of the conditional distance to the target function, across

quadrature points of e. Items are then selected by use of a weighted

composite score which assesses their fit to the criterion.

This approach appears to demonstrate three distinct benefits. First, the

moving average criterion, as a form of an objective function, absorbs and

redirects error in fit thus allowing for a non-iterative solution. The result

is a reasonably fast method of fitting any target information curve. Second,

the algorithms simultaneously consider all quadrature points which define the
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test information curves and upon which the information functions are

conditional. That is, rhe entire information curve is always fit in the

process of selecting itvils or items subsets. Finally, the algorithms can bc

conveniently extended for use with subtests/subtargets, item su5sets and

multiple test forms.

In general, ITEMSEL was ahle to produce six test forms which reasonably

matched the Form 26A target test along multiple levels of crit.eria. For

example, IRT item parameters were shown r.o closely correspund to the

parameters in the target test; more closely, in fact, than the parameters

derived from existing, manually constructed forms of the Mathematics test.

Other criteria denoting the fit of the selected test forms to the target test

(e.g., comparisons of the actual information curves) likewise demonstrated a

strong association between forms.

The crucial point appears to be that ITEMSEL was able to successfully

generate test forms with similar information curves. This was even shown to

be the case when extending the notion of parallelism to expected score

distributions and classical item parameters.

The process is, of course, far from perfect. Nonetheless, from an

applied viewpoint: (a) the method is fast (which makes it feasible for

microcomputer technology, even for large scale applications) and (b) it

appears to be at least as accurate as manual test construction methods given

the constraints of this study. When implemented as part of an integrated

software package such as ITEMSEL, these methods should readily complement the

test construction process. This applied viewpoint defines the final intent

behind the methods described in this paper.
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Author Notes

1Partitioning the information CDF into equal areas essentially

prioritizes the quadrature points of e relative to the conditional information

densities. Accordingly, the concentration and spread of 8 corresponds closely

to the actual distributional properties of the test information function.



www.manaraa.com

25

REFERENCES

Ackerman, T. A. (April, 1989). An alternative methodology for creating

parallel test forms use the IRT information function. Paper presented at

the Annual Meeting of the National Council on Measurement in Education, San

Francisco, CA.

Adema, J. J. (1988). A note on solving large-scale zero-one programming

problems. Research Report 88-4, University of Twente, Netherlands.

Enschede: University of Twente, Department of Education, 1-10.

Lord, F. M. (1977). Practical applications of item characteristic curve

theory. Journal of Educational Measurement, 14, 117-138.

Lord, F. M. (1980). Applications of item response theory to practical testing

problems. Hillsdale, NJ: Lawrence Erlbaum Assoc.

Microsoft Corp. (1987). Quick Basic 4.0.

Nobel, C. (March, 1990). Personal communication.

Theunissen, T. J. J. M. (1985), Binary programming and test design.

Psychometrika, 50, 411-420.

Samejima, F. (1977). Weakly parallel tests in latent trait theory with some

criticisms of classical test theory. Psychometrika, 42, 19i-198.

van der Linden, W. J. & Boekkooi-Timminga, E. (1989). A maxmin model for test

design witn practical constraints. Psychometrika, 54(2), 237-247.

Wingersky, M. S., Barton, M. A., and Lord, F. M. (1982). LOCIST IV.



www.manaraa.com

Table 1

Dese:riptive Summary of Fitted Item Parameters to Form 26A Target (40 Items)

Form

Means
Standard Deviations Skewness Kurtosis

a b c a b c a b c a

AAP MATH 26A* 1.03 0.29 0.16 0.40 0.60 0.04 0.92 -0.62 0.03 0.19 -0.47 1.19Form A 1.03 0.35 0.17 0.29 0.52 0.06 0.87 -0.20 0.52 0.96 -1.88 0.20Form B 1.05 0.35 0.17 0.29 0.50 0.06 1.03 -0.31 2.17 1.68 -0.79 9.65Form C 1.05 0.31 0.17 0.30 0.54 0.05 0.71 -0.12 0.25 1.09 -1.06 -0.25Form D 1.05 0.32 0.16 0.29 0.55 0.06 1.46 -0.11 0.81 2.56 -0.66 1.50Form E 1.04 0.31 0.17 0.28 0.50 0.06 1.25 -0.49 -0.32 1.88 -0.64 0.09Form F 1.01 0.32 0.15 0.29 0.50 0.05 0.68 0.13 -0.27 0.88 -0.94 0.27

target seL of items
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Table 2

Means and Standard Deviations of IRT Paramete.-s for
12 AAP Math Forms (Manually-Constructed)

(N = 40 Items)

Test Form a

Form 24B 1.058 .309
j

.160

(0.296) (.661) ( 084)

Form 25B 0.994 0.395 0.159
(0.247) 0.973) (0.079)

Form 25C 1.078 0.359 0.157
(0.379) (0.744) (0.077)

Form 25D 1.068 0.321 0.142
(0.353) (0.830) (0.079)

Form 25E 1.057 0.307 0.128
(0.259) (0.633) (0.055)

Form 25F 0.950 0.385 0.152
(0.370) (0.863) 0.062)

Form 26B 0.989 0.240 0.172
(0.358) (0.875) (0.046)

Form 26C 0.930 0.328 0.162
(0.365) (0.876) (0.034)

Form 26D 0.951 0.392 0.185
(0.427) (1.283) (0.026)

Form 26E 0.972 0.254 0.166
(0.297) (0.777) (0.048)

Form 26F 0.926 0.342 0.159
(0.365) (0.953) (0.034)

Form 27A 0.990 0.332 0.178
(0.394) (0.868) (0.046)

( ) = Std. Deviation

3

27
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Table 3

Goodness-of-Fit Indices (to Form 26A Tar et) (

Test Form

Information Function Indices

IUAD1 URMS WMS

Form A 0.709 0.849 0.874 0.943

(0.033) (0.039) (0.040) (0.044)

Form B 0.681 0.788 .637 0.644

(0.031) (0.036) (0.029) (0.030)

Form C 0.816 0.949 1.018 1.051

(0.038) (0.044) (0.047) (0.049)

Form D 0.733 0.889 0.733 0.688

(0.034) (0.041) (0.034) (0.032)

Form E 0.670 0.781 0.655 0.655

(0.031) (0.036) (0.030) (0.030)

Form F 1.078 1.276 1.885 1.944

(0.050) (0.059) (0.087) (0.090)

SE(0)Indices

Test Form 1UAD
SE(0)

1 URMS ,

SE(0)
WMS

SE(0
ASEM

Form A 0.040 0.159 0.006 0.0005

Form B 0.053 0.219 0.011 0.0010

Form C 0.039 0.146 0.004 0.0005

Form D 0.041 0.161 0.005 0.0006

Form E 0.039 0.150 0.005 0.0005

Form F 0.031 0.089 0.002 0.0003

( ) Proportion of mean information in Cile Form 26A target curve (21.67).
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Table 4

-
Predi'' d Score Distributions for Six Fitted Test Forms and Target; Form 26A

Test

Form
-

S r . S
r

S
x

Skew Kurtosis

26A
*

.495 .126 .591 .079 19.825 8.937 .369 -,812

A .496 .117 .585 .065 19.840 8.926 .361 -.808

.493 .117 .586 .070 19.734 8.959 .365 -.844

.492 .128 .588 .064 19.686 8.913 .331 -.826

.497 .128 .598 .070 19.874 9.071 .333 -.845

.489 .102 .594 .070 19.551 9.171 .337 -.878

.503 .111 .594 .081 20.139 9.117 .330 -.846

*
Target
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Figure 3. TCCs for the Target Test Form 26A and
Six Test Forms Fitted by ITEMSEL
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